Crowdsourced Evaluation of Semantic Patterns for Recommendation
نویسندگان
چکیده
In this paper we explore the use of semantics to improve diversity in recommendations. We use semantic patterns extracted from Linked Data sources to surface new connections between items to provide diverse recommendations to the end users. We evaluate this methodology by adopting a bottom-up approach, i.e. we ask users of a crowdsourcing platform to choose a movie recommendation from among five options. We evaluate the results in terms of a diversity measure based on the semantic distance of topics and genres of the result list. The results of the experiment indicate that there are features of semantic patterns that can be used as an indicator of its suitability for the recommendation process.
منابع مشابه
Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملAHP Techniques for Trust Evaluation in Semantic Web
The increasing reliance on information gathered from the web and other internet technologies raise the issue of trust. Through the development of semantic Web, One major difficulty is that, by its very nature, the semantic web is a large, uncensored system to which anyone may contribute. This raises the question of how much credence to give each resource. Each user knows the trustworthiness of ...
متن کاملAHP Techniques for Trust Evaluation in Semantic Web
The increasing reliance on information gathered from the web and other internet technologies raise the issue of trust. Through the development of semantic Web, One major difficulty is that, by its very nature, the semantic web is a large, uncensored system to which anyone may contribute. This raises the question of how much credence to give each resource. Each user knows the trustworthiness of ...
متن کاملModeling a semantic recommender system for medical prescriptions and drug interaction detection
Introduction: The administration of appropriate drugs to patients is one of the most important processes of treatment and requires careful decision-making based-on the current conditions of the patient and its history and symptoms. In many cases, patients may require more than one drug, or in addition to having a previous illness and receiving the drug, they need new drugs for the new illness, ...
متن کاملAutomatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach
In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013